
Strategy Pattern, Search, Config Files 
Linked List Implementation 

 
 

Checkout StrategyPattern project from SVN 
Checkout LinkedLists project from SVN 





An application of 
function objects 



 A named and well-known problem-solution 
pair that can be applied in a new context. 



 1977     2004 



 Problem: How do we design for varying, but 
related, algorithms or policies? 

 Solution: Define each algorithm or policy in a 
separate class with a common interface 



return s.getPreDiscountTotal() * 
  this.percentage; 

double pdt = 
s.getPreDiscountTotal(); 
if (pdt < this.threshold) { 
    return pdt; 
} else { 
    return pdt – discount; 
} 



Linear vs. Binary Search 



 Consider: 
◦ Find Cary Laxer’s number in the phone book 
◦ Find who has the number 232-2527 

 
 Is one task harder than the other? Why? 

 
 For searching unsorted data, what’s the worst 

case number of comparisons we would have 
to make? 



 A divide and conquer strategy 
 

 Basic idea: 
◦ Divide the list in half 
◦ Decide whether result should be in upper or lower 

half 
◦ Recursively search that half 



 What’s the best case? 
 

 What’s the worst case? 



Represent search algorithms 
using a strategy pattern 
Use a configuration file to 
specify the strategy 
Check out from repo and 
work as a team 
Help each other to 
understand 



Understanding the 
engineering trade-offs when 
storing data 



 Efficient ways to store data based on how 
we’ll use it 
 

 The main theme for the rest of the course 
 

 So far we’ve seen ArrayLists 
◦ Fast addition to end of list 
◦ Fast access to any existing position 
◦ Slow inserts to and deletes from middle of list 

Q1 



 What if we have to add/remove data from a 
list frequently? 

 LinkedLists support this: 
◦ Fast insertion and removal of elements  
 Once we know where they go 
◦ Slow access to arbitrary elements 
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Insertion, per Wikipedia 

“random access” 

Q2, Q3 



 void addFirst(E element) 
 void addLast(E element) 
 E getFirst() 
 E getLast() 
 E removeFirst() 
 E removeLast() 

 
 What about accessing the middle of the list? 
◦ LinkedList<E> implements Iterable<E> 





Enhanced For Loop What Compiler Generates 

for (String s : list) { 
  // do something 
} 

Iterator<String> iter = 
    list.iterator(); 
 
while (iter.hasNext()) { 
  String s = iter.next(); 
  // do something 
} 



 A simplified version, with just the essentials 
 

 Won’t implement the java.util.List interface 
 

 Will have the usual linked list behavior 
◦ Fast insertion and removal of elements  
 Once we know where they go 
◦ Slow random access 



When you have finished the 
StrategyPattern exercise 
 
Work with your team on the 
team project 
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