
Strategy Pattern, Search, Config Files
Linked List Implementation

Checkout StrategyPattern project from SVN
Checkout LinkedLists project from SVN

An application of
function objects

 A named and well-known problem-solution
pair that can be applied in a new context.

 1977 2004

 Problem: How do we design for varying, but
related, algorithms or policies?

 Solution: Define each algorithm or policy in a
separate class with a common interface

return s.getPreDiscountTotal() *
 this.percentage;

double pdt =
s.getPreDiscountTotal();
if (pdt < this.threshold) {
 return pdt;
} else {
 return pdt – discount;
}

Linear vs. Binary Search

 Consider:
◦ Find Cary Laxer’s number in the phone book
◦ Find who has the number 232-2527

 Is one task harder than the other? Why?

 For searching unsorted data, what’s the worst

case number of comparisons we would have
to make?

 A divide and conquer strategy

 Basic idea:
◦ Divide the list in half
◦ Decide whether result should be in upper or lower

half
◦ Recursively search that half

 What’s the best case?

 What’s the worst case?

Represent search algorithms
using a strategy pattern
Use a configuration file to
specify the strategy
Check out from repo and
work as a team
Help each other to
understand

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the rest of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list
◦ Fast access to any existing position
◦ Slow inserts to and deletes from middle of list

Q1

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements
 Once we know where they go
◦ Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

Q2, Q3

 void addFirst(E element)
 void addLast(E element)
 E getFirst()
 E getLast()
 E removeFirst()
 E removeLast()

 What about accessing the middle of the list?
◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {
 // do something
}

Iterator<String> iter =
 list.iterator();

while (iter.hasNext()) {
 String s = iter.next();
 // do something
}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements
 Once we know where they go
◦ Slow random access

When you have finished the
StrategyPattern exercise

Work with your team on the
team project

	CSSE 220 Day 16
	Questions
	Strategy Design Pattern
	Design Pattern
	History
	Strategy Pattern
	Strategy Example
	Search Review
	Searching
	Binary Search of Sorted Data
	Analyzing Binary Search
	Putting It All Together
	Data Structures
	Data Structures
	Another List Data Structure
	LinkedList<E> Methods
	Accessing the Middle of a LinkedList
	An Insider’s View
	Implementing LinkedList
	Team project work time

